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Problem Solving as Search & State Space Search
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Solving problems by searching.
State Space Search Graph & Strategies

Basic Idea of Search Algorithm



Why this chapter??

e TJo Understand and Learn:
o How we can make an Al / Agent to solve the problem.
o Problem solving using State Space Search
o State Space and way to formulate a well defined problem
O

Strategies of search in state space/ ways to find solution in the state
space.

o Methods to compare the strategies
e Solving a problem means finding a sequence of actions that will eventually

lead to desired goal.
e Finding a sequence of action when correct action to take is not obvious is

called plan.



Solving Problems by SEARCHING
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TypesofAgents

a Reflex Agent : a Planning agent :

Considers how the world IS Considers how the world WOULD BE

* Choose action based on current * Decisions based on (hypothesized)
percept. consequences of actions.

Do not consider the future  Must have a model of how the world
consequences of actions. evolves in response to actions.

Can a reflex agent be rational?  Must formulate a goal.

Source: D. Klein, P. Abbeel



Problem Solving - Definition

Problem Solving Is a process of generating solutions from
observed data.

Finding a sequence of actions that form a path to a goal state.
Problem is characterized by set of states and set of operations
and a set of goals.
The method of solving problem through Al involves the process
of:

o Defining the search space,

o Deciding start and goal states

o Finding the path from start state to goal state through
search space.




Problem Solving

e Search space or problem space is an abstract space that has
all valid states that can be generated by applying any
combination of operators to states.

e Problem space can have one or more solutions

e Solution is a combination of operators and states that
achieve the goals

e Search refers to a search for a solution in a problem space.



Problem Solving

Here we assume that the agents always have access to the world’s information,
such as a map. Thus, the four methods/phases to solve the problem by an
agent or Als:

e Goal Formulation: Decide the goal
e Problem Formulation:
o Define a problem
o Define state and actions allowed to reach a goal
o This is abstract modeling of the problem
e Search:
o Seguence of action agents take to reach the goal
o Such a sequence is the solution.
o Agent might have to simulated multiple sequences
e Execution:
o Agent can now execute the solution.



State Space

e Definition:

o State space Is defined as a set of all possible states for a
given problem

e Problem modeling technique.

e formalizes a problem in terms of initial state, goal
state and actions



Problem-solving Agent

SimpleProblemSolvingAgent(percept)
state = UpdateState(state, percept)
if sequence is empty then

goal = FormulateGoal(state)

problem = FormulateProblem(state, g)
sequence = Search(problem)

action = First(sequence)

sequence = Rest(sequence)

Return action




Problem Formulation: Using Cleaning Robot




Formulation

e States: All possible state

e |[nitial State: Any state can be designed as an
Initial state.

e Actions: {moveLeft(), moveRight(), doClean()}

e Transition Model:

o doClean() removes any dirt from the cell

o moveleft() moves toward the left, left cell exist

o moveRight() moves toward the right, right cell exist
e Goal States:

o The states in which every cell is clean
e Action Cost: Each action costs 1.



Example:Tic-Tac-ToeGame
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Example:Mechanical FaultDiagnosing

Start ask:
What is the problem?

Engine trouble
ask:
Does the car start?

Transmission breaks
ask: ......

Yes No

Engine starts Engine won’t start ask:
Will engine turn over?

Yes No battery

Yes o

Turn over Won't turn over ask: No

battery

ask: ........

A

Do lights come on?
dead




State Space SearchStrategies

There are two distinct ways for searching a state space graph:

= Data-Driven Search: (Forward chaining)
Start searching from the given data of a problem instance
toward a goal.

" Goal-Driven Search: (Backward chaining)
Start searching from a goal state to facts or data of the given
problem.



StateSpaceSearch Strategies..

Data-Driven Search is suggested if:

o The data are given in the initial problem statement.
o There are few ways to use the given facts.

o There are large number of potential goals.

o Itis difficult to form a goal or hypothesis.

Goal- Driven Search is appropriate if:

O A goalis given in the problem statement or can easily
formulated.

O There are large number of rules to produce a new facts.

O Problem data are not given but acquired by the problem
solver.



HowHumanBeingsThink..?

« Human beings do not search the entire state space
(exhaustive search).

* Only alternatives that experience has shown to be effective
are explored.

 Human problem solving is based on judgmental rules that
limit the exploration of search space to those portions of

state space that seem somehow promising.

« These judgmental rules are known as “heuristics”’.



HeunsticSearch

* A heuristic Is a strategy for selectively exploring the search space.

It guides the search along lines that have a high probability of
Success.

* It employs knowledge about the nature of a problem to find a
solution.

It does not guarantee an optimal solution to the problem but can

come close most of the time.

 Human beings use many heuristics in problem-solving.



Search

We will consider the problem of designing goal-based agents
In fully observable, deterministic, discrete environments.

Start State

3

€= Goal State



Search

We will consider the problem of designing goal-based

agents in fully observable, deterministic, discrete

environments.

The agent must find a sequence of actions that reaches the

goal. The performance measure is defined by:

(a) reaching the goal, and ..

(b) how “expensive” the path to the goal is.



Search Problem Components

- Initial
Initial state State

Actions ‘

Transition model
What state results from
performing a given action in
each state?

Goal state
Solution Path

Path cost
Goal

Assume that it is a sum of . Stat
non-negative step costs ate

The optimal solution is the sequence of actions that gives the
[owest path cost for reaching the goal.



Search Space Definitions

State
« A description of a possible state of the world
* Includes all features of the world that are pertinent to the problem
Initial state
 Description of all pertinent aspects of the state in which the agent starts
the search
Goal test
« Conditions the agent is trying to meet (e.g., have $1M)
Goal state
« Any state which meets the goal condition
ex: Thursday, have $1M, live in NYC
Action
* Function that maps (transitions) from one state to another



Search Space Definitions

Problem formulation

« Describe a general problem as a search problem

Solution

« Sequence of actions that transitions the world from the initial state to a goal
State

Solution cost (additive)

e Sum of the cost of operators

 Alternative: sum of distances, number of steps, etc.

Search

* Process of looking for a solution

« Search algorithm takes problem as input and returns solution

« We are searching through a space of possible states

Execution

* Process of executing sequence of actions (solution)
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Example:Romania
- On vacation in Romania; currently in Arad. g |,
- Flight leaves tomorrow from Bucharest. o (S

A search problem is defined by:
1. Initial state (e.g., Arad)

2. Operators (e.g., Arad ->
Zerind, Arad -> Sibiu, etc.)
3. Goal test (e.g., at Bucharest)

4. Solution cost (e.g., path cost)




Example:Romania

- On vacation in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest.

-] Oradaa

Initial state
o Arad j
Actions Al
o Go from one city to another
Transition Model
o If you go from city Ato
city B, you end up in city B
Goal State _ q Hirseva
o Bucharest
Path Cost

o Sum of edge costs (total distance traveled)

[Vaslui

Ti misoara



StateSpace

The initial state, actions, and transition model define the state space of the problem;
« The set of all states reachable from initial state by any sequence of actions.
« Can be represented as a directed graph where the nodes are states and links
between nodes are actions.

What is the state space for
the Romania problem?

Fitesti

Hirsowa

M Mehadia
b2l s

Dobreta [

Efarie



Search problems and solutions

« Asearch problem can be defined as a set of possible states that the
environment can be in. we call this state space.

« The Initial state that the agent starts in. For example: Arad.

« A set of one or more goal states. Sometimes there is one goal state
(Bucharest), or a set of alternative goal states.

 The actions available to the agent. Given a state S, action(s) returns a finite
set of actions that can be executed in S. we say that each of these actions is
applicable in S.

* Actions(Arad)= {To_Sibiu, To _Timisoara, To_ Zerind}.



Search problems and solutions

« Atransition model, which describes what each action does. Results (s, a)
returns the state that results from doing action a in state s. For example,
Results(Arad, To_Zerind) = Zerind.

« An action cost function, gives numeric cost of applying action a in the state S
to reach s’.

« A sequence of actions forms a path, and a solution is a path from the initial
state to a goal state. We assume that action costs are additive; that is, the total
cost of a path is the sum of the individual action cost.

 An optimal solution has the lowest path cost among all solutions.

* The state space can be represented as a graph in which the vertices are
states and the directed edges between them are actions.



Search problems and solutions

State space: cities

Successor function: Roads: go
to adjacent city with cost =
distance

Start state: Arad
Goal test: Is state == Bucharest?

Solution?




State Space

A model is the formulation of the problem.

« State space graph: a mathematical representation of the search problem.
Nodes are world configurations. Arcs represent successors (action results).

The goal test is a set of goal nodes (maybe only ones).

f-—_—h-\\.. .-"f_ __HM_.
.

° ' ) LTy
Each state occurs only once. TN~ N
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State Space

An Al problem can be represented as a state space graph.

A graph is a set of nodes and links that connect them.

Graph theory:
o Labeled graph. o Parent.
o Directed graph. o Child.
o Path. o Sibling.
o Rooted graph. © Ancestor.

o Tree. o Descendant.



Data structure for Search tree
(Node)

we will assume a node is a data structure with five components:

* the state In the state space to which the node corresponds;

 the node In the search tree that generated this node (this is called the parent
node);

* the operator that was applied to generate the node;

» the number of nodes on the path from the root to this node (the depth of the
node);

* the path cost of the path from the initial state to the node.

The node data type is thus:

datatype node

components: STATE, PARENT-NODE, OPERATOR, DEPTH, PATH-COST



Example:VacuumWorld

A ;B
ﬁ:lﬂ =

0260

0

03
%D

o States:
o Agent location and dirt location
o How many possible states?
o What if there are n possible locations?
o The size of the state space grows exponentially with the
“size” of the world!
o Actions:
o Left, right, suck.
o Transition Model .. ?



Example:VacuumWorld
State SpaceGraph

o Transition Model:
L | =] ~— vl R
2R |28 _L_ﬂﬁ ogR
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Example:the 8-Puzzle

7 2
o States -
o Locations of tiles
0 8-puzzle: 181,440 states (9!/2) ° JIL>
o 15-puzzle: ~10 trillion states S
o 24-puzzle: ~102° states 1
o Actions 3 || 4
o Move blank left, right, up, down |
o Path Cost

Goal State

o 1 per move



Example: RobotMotion Planning

— [of %
o States

o Real-valued joint parameters (angles, displacements).

o Actions
o Continuous motions of robot joints.

o Goal State
o Configuration in which object is grasped.

o Path Cost
o Time to execute, etc.



Example: Rubik’s Cube

States: list of colors for each cell on
each face

Initial state: one specific cube
configuration

Action: rotate row x or column y on
face z direction a

Goal: configuration has only one
color on each face

Path cost: 1 per move



Example: Eight Queens

States: locations of 8 queens on
chess board

Initial state: one specific queen’s
configuration

Actions: move queen X to row y
and column z

Goal: no queen can attack another

(cannot be in same row, column, or
diagonal)



Example: Tic-Tac-Toe

Nodes(N): all the different configuration of Xs and Os that

the game can have.
Arcs (A): generated by legal moves by placing X or O In
unused location.

- Start state (S): an empty board.
- Goal states (GD): a board with three Xs in a row, column,

or diagonal.
 The arcs are directed, then no cycles in the state space,

directed acyclic graph (DAG).
« Complexity: 9! Different paths can be generated.



Example: Traveling Salesperson

A salesperson has five cites to visit and ten must return home.

* Nodes(N): represent 5 cites.
*Arcs(A): labeled with weight indicating the cost of traveling

between connected cites.
 Start state(S): a home city.

* Gogl states(GD): an entire path contains a complete circuit
with minimum cost.

eCcomplexity:  (n-1)! Different cost-weighted paths can

be generated.



Performance Evaluation of Search Strategies

e Itis criteria used to choose search algorithms
e Evaluating the algorithms performance considering four factors:
o COMPLETENESS
m Is the algorithm guaranteed to find a solution when there is one, and to
correctly report failure when there is not?
o COST OPTIMALITY
m Does the algorithm find a solution to the problem with the lowest
path cost of all solutions?
o TIME COMPLEXITY
m How long does it take to find the solution? This can be measured in
seconds or more abstractly by the number of states and actions
considered?
o SPACE COMPLEXITY
m How much memory is needed to perform the search?



Searching with a general search tree

Arad

CArad > (Fagaras> COradea > (@riouViced

Search:

« Expand out potential plans (tree nodes)

« Maintain a fringe of partial plans under consideration

* Try to expand as few tree nodes as possible.

Important ideas: fringe, expansion, exploration strategy



Search..?

Given:
v Initial state
v’ Actions
v Transition model
v Goal state
v' Path cost

I ind 1 mal solution?



Search:Basic idea

o Let's begin at the start state and expand it by making a
list of all possible successor states.

o Maintain a frontier or a list of unexpanded states.

o At each step, pick a state from the frontier to expand.

o Keep going until you reach a goal state.

o Try to expand as few states as possible.



Search:Basic _idea

Start



Search:Basic _idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




Search:Basic idea




SearchTree (the What-if tree) Starting

“What if” tree of sequences of actions and Action

GUEERES Successor
l.e., When we are searching, we are not acting in State

the world, merely “thinking” about the possibilities.
The root node corresponds to the starting state.

The children of a node correspond to the
successor states of that node’s state.

A path through the tree corresponds to a / ontier
sequence of actions. L

Oa
A solution is a path ending in the goal state State

Nodes vs. States? A state represents the world, while a node is a data
structure that is part of the search tree. A node must keep a pointer to its
parent, path cost, and possibly other information.



Tree Search Algorithm Outline

Initialize the frontier using the starting state.
While the frontier is not empty:
* Choose a frontier node according to search strategy
and take it off the frontier.

* |f the node contains the goal state, return solution.

» Else expand the node and add its children to the

frontier.



TreeSearchExample

Start: Arad
Goal: Bucharest

80

Rimnicu YWikea

[ ] Vaslul

-] Hirzcva



TreeSearchExample

Start: Arad
Goal: Bucharest

lhu
-'u

CTimisoaa)




Tree SearchExample

.;::_'__5 h_;l‘—__}

Start: Arad
Goal: Bucharest




Handling Repeated States

To handle repeated states:
 Every time you expand a node, add that state to the
explored set; do not put explored states on the frontier
again.
* Every time you add a node to the frontier, check whether it
already exists with a higher path cost, and if yes, replace that
node with the new one.



General search algorithm

Open =initial state /[ open list is all generated states
/[ that have not been “expanded”

While open not empty // one iteration of search algorithm
state = First(open) /[ current state is first state in open
Pop(open) // remove new current state from open
If Goal(state) I/ test current state for goal condition

return “succeed” /[ search is complete

I/ else expand the current state by
// generating children and
// reorder open list per search strategy
else open = QueueFunction(open, Expand(state))
Return “fail”

Note: Search strategies differ only in QueuingFunction



General search algorithm

The frontier is the set of nodes (and corresponding states) that have been
reached but not yet expanded; the interior is the set of nodes (and
corresponding states) that have been expanded.

Note that the frontier separates two regions of the state-space graph: an
Interior region where every state has been expanded and an exterior region
of states that still need to be reached.

To understand completeness, consider a search problem with a single goal.
That goal could be anywhere in the state space; therefore, a complete
algorithm must be capable of systematically exploring every state that Is

reachable from the initial state.



Search

What is search problem?

* An intelligent agent is trying to
find a set or sequence of

actions to achieve a goal

* This is a goal-based agent

&

Y Bindvs. Heurisic Sta

egies



Today’s class

e Search

* Uninformed (blind) search method

* Depth first search

»= Depth limited

= |terative deeping

 Breadth first search

= Bidirectional search

 Uniform cost search




Blind vs. Heurlistic Strategies

¢ Blind (or Un-Informed / Exhaustive / Brute-Force)

strategies do not exploit any of the jnformation

contained in a state.

** Heuristic (or Informed) strategies exploits such

information to assess that one node is “more

promising” than another.



General search algorithm

There are search strategies that come under the heading of uninformed search.
The term means that they have no information about the number of steps or the path
cost from the current state to the goal—all they can do is distinguish a goal state from
a non goal state.

Uninformed search is also sometimes called blind search.

Strategies that use such considerations are called informed search strategies or
heuristic search strategies.

An uninformed search is less effective than an informed search. An uninformed
search is still important, however, because there are many problems for which there

IS no additional information to consider.



Depth-first search




Depth-first search

Depth-first search always expands one of the nodes at the deepest level of the tree.
Only when the search hits a dead end (a non-goal node with no expansion) does the
search go back and expand nodes at shallower levels.

GENERAL-SEARCH can implement this strategy with a queuing function that always
puts the newly generated states at the front of the queue. Because the expanded node
was the deepest, its successors will be even deeper and are now the deepest.
Depth-first search has very modest memory requirements. As the figure shows, it needs
to store only a single path from the root to a leaf node, along with the remaining
unexpanded sibling nodes for each node on the path.

depth-first search has much smaller needs for memory.



Depth First Search

e DFS s recursive a recursive algo for tree Tree with an Empty Stack
traversing

e |t starts from the root node and follows each @
path to its greatest depth node before moving / \
to the next path.

e DFS uses stack for its implementation. / \ / \

Frontier Stack
LIFO (Last in First Out)



Diagram

Depth First Search

—> Level 0




Depth-first search

The time complexity for a depth-first search for problems with many solutions
may actually be faster than breadth-first because it has a good chance of finding
a solution after exploring only a small portion of the whole space (finite state).
The drawback of depth-first search is that it can get stuck if it goes down the
wrong path. Many problems have very deep or even infinite search trees, so
depth-first search will never be able to recover from an unlucky choice at one of
the nodes near the top of the tree (incomplete).

Depth-first search is not cost-optimal; it returns the first solution it finds, even
If it Is not the cheapest. For finite state spaces, it is efficient and complete; in
Infinite state spaces, it Is not systematic: it can get stuck going down an infinite
path, even if there are no cycles. Thus, the depth-first search is incomplete.

In general depth-first search should be avoided for search trees with large or
Infinite maximum depths.



Depth-First Search

- QueueingFn adds the children to the front of the open list
- BFS emulates FIFO queue
- DFS emulates LIFO stack
- Net effect
 Follow leftmost path to the bottom, then backtrack

« Expand deepest node first



Backiracking Search

Start
Node

N
/)7 /

AN N/

Dead Dead Dead Dead
End End End End




DFS Examples




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

,1

/<\ (X

Goal



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.




Analysis

Time complexity

»In the worst case, search entire space

»Goal may be at level d but tree may continue to level m, m>=d, O(b™)

» Particularly bad if tree is infinitely deep

Space complexity

»Only need to save one set of children at each level

»1+b+Db+...+Db(mlevels total) = O(bm)

» For previous example, DFS requires 118kb instead of 10 petabytes for d=12
(10 billion times less)

Optimal: it iIs nonoptimal as it may generate many steps or high costs to reach
the goal state.

Completeness: Complete with in finite state space



Depth First Search.

Advantages:

e Requires very less memory as it only store a stack of nodes on the path from

root node to the current node.
e Takes less time to reach to the goal node than BFS if it traverses in the right

path

Disadvantages

e Possibility that many states keep reoccurring and there is no guarantee of
finding the solution.
e DFS goes deep down searching and sometime it may go to the infinite loop



Depth Limited Search

e Toovercome the problem of infinite depth in DFS, it
can be limited to predetermined depth.

e Node at the depth limit will treat as it has no successor
nodes further.

e |t can be terminated with two conditions of failure:

o Standard value Falilure: the problem does not have a solution
o Cutoff failure value: no solution for the problem within a given depth limit.



Depth-first search DFS

Path: S->D ->G

Fringe isa LIFO

o Wwm
~

NGO O

o wm

R 0 @
NGO —~ O

- > = >



Breadth-first search




Breadth-first search

In this strategy, the root node is expanded first, and then all the nodes generated by the
root node are expanded next, including their successors, and so on.

In general, all the nodes at depth d in the search tree are expanded before the nodes at
depthd + 1

Breadth-first search can be implemented by calling the GENERAL-SEARCH algorithm
with a queuing function that puts the newly generated states at the end of the queue after
all the previously generated states.

Breadth-first search is a very systematic strategy because it considers all the paths of
length 1 first, then all those of length 2, and so on.

If there is a solution, breadth-first search is guaranteed to find it, and if there are several

solutions, breadth-first search will always find the shallowest goal state first.



Breadth First Search (BFS)

e Searches breadthwise In tree or graph, so it is called
BFS

e Starts searching from root node of the tree and expands
all the successor node at the current level before moving

e (0 next nodes
e |tis implemented using queue data structure.



Diagram

Breadth First Search

—¥ Levelo
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BFS Examples
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Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

,1

/<\ (X

Goal



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.




Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1

/<\ (X



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.




Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1

3

FRINGE = (5 6,7,8,9)
°® \ /\b



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1

3

FRINGE = (6 7,8,9, 10, 11)
°® \ / \b



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

/.\

FRINGE = (7, 8, 9, 10, 11, 12, 13)

7a%
AN /\



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

/.\

FRINGE = (8, 9, 10, 11, 12, 13 14,
15)

AN /\ /\



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1




Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1

FRINGE = (10, 11, 12, 13, 14, 15)
\ 5 6 7

95 ,4’& 12 13 14/&




Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1

FRINGE = (11 12, 13, 14, 15)

\ A /\



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1

3

FRINGE = (12 13, 14, 15)
°0 \ / \



Breaath-HirstStrategy

New nodes are inserted at the end of the FRINGE.

1

FRINGE = (13 14, 15)
9 5 \ 12 ~ w13 / X



Breadth-first search

In terms of the four criteria

* breadth-first search is complete, and it is optimal

Drawbacks

« the memory requirements are a bigger problem for breadth-first search
* time requirements are still a major factor.

In general,

exponential complexity search problems cannot be solved for any but the

smallest instances.



Analysis

Assume goal node at level d with constant branching factor b

Time complexity (measured in #nodes generated)

>1 (1stlevel ) + b (2" level) + b2 (3 level) + ... + bd (goal level) + (bd+1 — b) = O(bd+1)
This assumes goal on far right of level

Space complexity

> At most majority of nodes at level d + majority of nodes at level d+1 = O(b9*1)

» Exponential time and space

Completeness: If the shallowest goal node is at some finite depth then BFS will find
a solution.

Optimality: If the past cost is non-decreasing function of the depth of the node.



Analysis

See what happens with b=10
« expand 10,000 nodes/second
1,000 bytes/node

__ Depth | _Nodes | _Time | Memory _

2 10° .11 seconds 1 megabyte
4 10° 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
8 10° 31 hours 1 terabyte
10 10M 129 days 101 terabytes
12 1013 35 years 10 petabytes

15 1076 3,523 years 1 exabyte



Breadth-first search BFS

Fringe is a FIFO

Path: S->D ->G

S
0)

S SA SB SD

0) 1) @) @)

SA SB SD SAC

(1) 1) @) @)

SB SD SAC SBD

(1) 1) @ @

SD SAC SBD SDG

(1) (2) (2) (2)

SAC SBD SDG SACD SACG

(2) 2 @ & 6

SDG
(2)



Comparison of Search Techniques

____________DFS__BFS___

Complete N Y
Optimal N N
Heuristic N N
Time bm pd+1

Space bm pd+1



Depth-Limited Strategy

Depth-first with depth cutoff k (maximal depth below which nodes are not
expanded)
Three possible outcomes:

» Solution.

« Failure (no solution).

« Cutoff (no solution within cutoff).

lterative- Deepening Strategy

Repeat fork =0, 1, 2, .. :
- Perform depth-first with depth cutoff k



A Depth:=0

Depth-Limited Strategy PN

E.g., depth cutoff k = 1 / ' \

Depth = 2

/

/\\ /\

lterative-Deepening Strategy / \ \
E.g., Repeatfork=0to 4 |
- Perform depth-first with depth cutoff k  { O ) &

i

Depth = 3

(‘s  } Depth = 4




lterative Deepening Search

d DFS with depth bound
0 QueuingFn is engqueue at front as with DFS
« Expand(state) only returns children such that depth(child) <=
threshold
 This prevents search from going down infinite path
O First threshold is 1

* |f do not find solution, increment threshold and repeat



Limit =0 @ &

Examples
Limit=1 >3
Limit =2 >
(A)

2O

Limit = 3 o)




Analysis

What about the repeated work?

Time complexity (number of generated nodes)
>b]+[b+b?]+.. +[b+ b2+ . +DbI]

»>(d)b + (d-1) b2+ ... + (1) bd

»>0O(bY)



Comparing Depth,Breadth,& lterative Deepening Search
Algorithms

o Breadth-first and iterative deepening guarantee
shortest solution.

o Breadth-first: high space complexity.
o Depth-first: low space complexity.

o lterative deepening: best performance in terms of
orders of complexity.



Bidirectional Search

Bidirectional search is a graph search algorithm that finds the shortest
path from an initial start state to a goal state in a directed graph.

It runs two simultaneous searches: gne forward from the initial State

and one backward from the goal. stopping when they meet.

The reason for this approach is that in many cases, it is faster: for
Instance, in a simplified model of search problem complexity in which
both searches expand a tree with branching factor b, and the distance
from start to goal is d, each of the two searches has complexity O(bd?2)
(in Big O notation), and the sum of these two search times is much less
than the O(bd) complexity that would result from a single search from the
beginning to the goal.



Bidirectional Search

e Runs two simultaneous searches, one from initial state called as
forward search and other from the goal state called as backward
search.

e Replaces one simple search graph with two small subgraph.
e The search stops when these two graphs intersect each other.

e |t can use search techniques such as BFS, DFS, DLS etc.



Diagram

Bidirectional Search

Root node
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Bidirectional Search.

Advantages:

e Itis fast
e Requires less memory

Disadvantages:

e Dilfficult to implement
e Should know the goal state in advance



Analysis

e Time Complexity: bidirectional using BFS is O(b%/?)
e Space Complexity: O(b%/?)
e Optimal: It is optimal

e Completeness: complete if we use BFS in both searches



Bidirectional Search
Complexity of Bidirectional Search

Consider the following case:
- forward and backward branching both b, uniform ..

o/' N e
o O el S
\‘/' Sy =@ \.‘/
. 7
Q- _@®
d
d/2 d/2

Time ~ bhd2+ pd2 < pd



Uniform cost search




Uniform Cost Search

e Search algorithm used for traversing a weighted tree or
graph

e Goal: to find path which has lowest cumulative cost to
reach the goal

e EXxpands node according to their path cost from the root
node.

e Priority queue is used to implement UCS
e [t gives maximum priority to lowest cumulative cost.
e Similar to BFS if path cost of all edge is same.



Diagram

Uniform Cost Search

—®  Level O

— " e ]

—> | Jevel 2

—»| Jevel 3

—  Level 4



uniform-cost search

Uniform cost search modifies the breadth-first strategy by always expanding
the lowest-cost node on the fringe (as measured by the path cost g(n)), rather
than the lowest-depth node.

When certain conditions are met, the first solution that is found is guaranteed
to be the cheapest solution because if there were a cheaper path that was a
solution, it would have been expanded earlier and thus would have been

found first.



Uniform Cost Search (Branch&Bound)

QueueingFn is SortByCostSoFar

Cost from root to current node n is g(n)

« Add operator costs along path

First goal found is least-cost solution

Space & time can be exponential because large subtrees with
Inexpensive steps may be explored before useful paths with costly steps
If costs are equal, time and space are O(b9)

« Otherwise, complexity related to cost of optimal solution



Uniform Cost Search

Advantages:
e Optimal because at every state path with the least cost is chosen

Disadvantages:

e Does not cares about the number of steps involved In
searching and only concerned about path cost. Due to
which this algorithm may be stuck in an infinite loop.



unifo

rm-cost search

eEach step has some cost = € > 0.

eThe cost of the path to each fringe node N is

g(N) = Z costs of all steps.

ne goal is to generate a so

ne queue FRINGE is sortec

ution path of minimal cost.

In Increasing cost.



Uniform Cost Search

Nodes List = (SO)

Nodes List = (A1, B5, C15)
Nodes List = (B5, G11, C15)
Nodes List = (G10, G11, C15)




Example

Cost sofar=0

Frontier list: C



Example

NP O %Y
©,

Frontier list: B(2) T(1) O(3) E(2) P(5)



Example

P (O N
©

Frontier list: T(1) B(2) E(2) O(3) P(5)



Example

06 © Gos
©

Frontier list: B(2) E(2) O(3) P(5)

InJ

&



Example

Frontier list: E(2) O(3) P(5)

Cost 5o far =

é/%‘z@



Example

Cost so far =2
2\\
P

E
5/1
O

2

@,

Frontier list: E(2) A(3) O(3) P(5) S(5) R(6)




Example

Sbo

Frontier list: A(3) O(3) P(5) S(5) R(6)



Example

Frontier list: A(3) O(3) P(5) S(5) R(6) G(7)




Example

Cost sofar=3

6

Frontier list: O(3) P(5) S(5) R(6) G(7)




Example

Cost sofar=3
\

Frontier list: 1(4) N(5) P(5) S(5) R(6) G(7)



Example

Frontier list: N(5) P(5) S(5) R(6) G(7) Z(6)



Example

Frontier list: N(5) P(5) S(5) R(6) Z(6) G(7)



Example

Frontier list: P(5) S(5) R(6) Z(6) G(7)



Example

Cost sofar= 5

Frontier list: S(5) F(6) R(6) Z(6) G(7) D(8) L(10)



Example

Costsofar=5

Frontier list: F(6) R(6) Z(6) G(7) D(8) L(10)



Example

Costsofar=5

Frontier list: R(6) Z(6) G(7) D(8) L(10)



Example

Costsofar=06

Frontier list: Z(6) G(7) D(8) L(10)



Example

Costsofar=6

Frontier list: Z(6) G(7) D(8) L(10)



Example

Costsofar=06
GOALIS FOUND!

Path: C, O, |, Z



Uniform cost search “path cost”

Path: S->A->C->G
Cost = 2+4+2=8

(0)
(2)
(3)
()
(6)

(8)

S
(0)

A B D
2) (3) ()

B D C
@) ) 6)
D C D
) 6 )
C DG
6) (7) (10)
D D G G
(7) (7) (8) (10)



Analysis

e Time Complexity: Let C* be the cost of the optimal solution, and
€ be the each step to get closer to the goal node. Then the
number of steps is C*/e+1. Here +1 Is taken as we start
from state 0 and end to C*/e. Hence O(b"(1+[C*/g]))

e Space complexity: The same logic is for space complexity. So

the worst case space complexity is O(b” (1+[C*/€]))
e Optimal: optimal as it selects the path with lowest path cost

e Completeness: it is complete, if there is solution, it will find it.



Comparison of Search Techniques

Criterion Breadth- Uniform- Depth-  Depth- [terative Bidirectional
First Cost First Limited  Deepening  (if applicable)
Complete? Yes” Yes®® No No Yes* Yes®
Time ont)y oy o™y o) O(b?) O(b%/2)
Space oty omTEyObm)  O) O(hd) O(b¥/?)
Optimal? Yes® Yes No No Yes* Yes:d

Figure 3.21  Evaluation of tree-search strategies. b is the branching factor; d 1s the depth
of the shallowest solution; m is the maximum depth of the search tree; [ is the depth limit.
Superscript caveats are as follows: @ complete if b is finite; ® complete if step costs > € for
positive €; © optimal if step costs are all identical; ¢ if both directions use breadth-first search.




Thank you

Sara Sweidan

PhD, Artificial Intelligence
Assistant Professor
Faculty of Computers & Al
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