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Problem Solving as Search  & State Space Search

• Solving problems by searching.

• State Space Search Graph & Strategies

• Basic Idea of Search Algorithm



Why this chapter??

● To Understand and Learn:

○ How we can make an AI / Agent to solve the problem.

○ Problem solving using State Space Search

○ State Space and way to formulate a well defined problem

○ Strategies of search in state space/ ways to find solution in the state

space.

○ Methods to compare the strategies

● Solving a problem means finding a sequence of actions that will eventually 

lead to desired goal.

● Finding a sequence of action when correct action to take is not obvious is 

called plan.



Solving Problems by SEARCHING



a Reflex Agent :

Considers how the world IS
• Choose action based on current  

percept.
• Do not consider the future  

consequences of actions.

a Planning agent :

Considers how the world WOULD BE
• Decisions based on (hypothesized)  

consequences of actions.
• Must have a model of how the world  

evolves in response to actions.
• Must formulate a goal.

Source: D. Klein, P. Abbeel

TypesofAgents

Can a reflex agent be rational?



Problem Solving - Definition

● Problem Solving is a process of generating solutions from

observed data.

● Finding a sequence of actions that form a path to a goal state.

● Problem is characterized by set of states and set of operations

and a set of goals.

● The method of solving problem through AI involves the process

of:

○ Defining the search space,

○ Deciding start and goal states

○ Finding the path from start state to goal state through

search space.



Problem Solving

● Search space or problem space is an abstract space that has 

all valid states that can be generated by applying any 

combination of operators to states.

● Problem space can have one or more solutions

● Solution is a combination of operators and states that

achieve the goals

● Search refers to a search for a solution in a problem space.



Problem Solving
Here we assume that the agents always have access to the world’s information,

such as a map. Thus, the four methods/phases to solve the problem by an 

agent or AIs:

● Goal Formulation: Decide the goal

● Problem Formulation:

○ Define a problem

○ Define state and actions allowed to reach a goal

○ This is abstract modeling of the problem

● Search:

○ Sequence of action agents take to reach the goal

○ Such a sequence is the solution.

○ Agent might have to simulated multiple sequences

● Execution:

○ Agent can now execute the solution.



State Space

● Definition:
○ State space is defined as a set of all possible states for a

given problem

● Problem modeling technique.

● formalizes a problem in terms of initial state, goal

state and actions



Problem-solving Agent

SimpleProblemSolvingAgent(percept)

state =  UpdateState(state, percept)

if sequence is empty then

 goal =  FormulateGoal(state)

problem =  FormulateProblem(state, g)

 sequence =  Search(problem)

 action =  First(sequence)

 sequence =  Rest(sequence)

 Return action



Problem Formulation: Using Cleaning Robot



Formulation

● States: All possible state

● Initial State: Any state can be designed as an

initial state.

● Actions: {moveLeft(), moveRight(), doClean()}

● Transition Model:
○ doClean() removes any dirt from the cell

○ moveLeft() moves toward the left, left cell exist

○ moveRight() moves toward the right, right cell exist

● Goal States:
○ The states in which every cell is clean

● Action Cost: Each action costs 1.



Example:Tic-Tac-ToeGame
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Example:MechanicalFaultDiagnosing

Start ask:
What is the problem?

Engine trouble  
ask:

Does the car start?

breaks
ask: ……

Transmission
ask:………

Engine won’t start ask:
Will engine turn over?

Won’t turn over ask:
Do lights come on?

Turn over
ask: ……..

Engine starts
ask:……….

battery  
ok

battery  
dead

…

Yes No

Yes No
Yes

No



StateSpaceSearchStrategies

There are two distinct ways for searching a state space graph:

▪ Data-Driven Search: (Forward chaining)
Start searching from the given data of a problem instance  
toward a goal.

▪ Goal-Driven Search: (Backward chaining)
Start searching from a goal state to facts or data of the given  
problem.



StateSpaceSearchStrategies..

SelectingSearchStrategy

Data-Driven Search is suggested if:
o The data are given in the initial problem statement.
o There are few ways to use the given facts.
o There are large number of potential goals.
o It is difficult to form a goal or hypothesis.

Goal- Driven Search is appropriate if:

o A goal is given in the problem statement or can easily  
formulated.

o There are large number of rules to produce a new facts.

o Problem data are not given but acquired by the problem  
solver.



HowHumanBeingsThink..?

• Human beings do not search the entire state space

(exhaustive search).

• Only alternatives that experience has shown to be effective

are explored.

• Human problem solving is based on judgmental rules that

limit the exploration of search space to those portions of

state space that seem somehow promising.

• These judgmental rules are known as “heuristics”.



HeuristicSearch

• A heuristic is a strategy for selectively exploring the search space.

• It guides the search along lines that have a high probability of 

success.

• It employs knowledge about the nature of a problem to find a 

solution.

• It does not guarantee an optimal solution to the problem but can 

come close most of the time.

• Human beings use many heuristics in problem-solving.



We will consider the problem of designing goal-based agents

in fully observable, deterministic, discrete environments.

       Start State

Goal State

Search



We will consider the problem of designing goal-based

agents in fully observable, deterministic, discrete 

environments.

The agent must find a sequence of actions that reaches the 

goal. The performance measure is defined by:

(a) reaching the goal, and ..

(b) how “expensive” the path to the goal is.

Search



SearchProblemComponents

Initial state  
Actions  
Transition model

What state results from  
performing a given action  in 
each state?

Goal state  
Solution Path  
Path cost

Assume that it is a sum of 
non-negative step costs

The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal.

Initial
State

Goal  
State



Search Space Definitions

State

• A description of a possible state of the world

• Includes all features of the world that are pertinent to the problem

Initial state

• Description of all pertinent aspects of the state in which the agent starts 

the search

Goal test

• Conditions the agent is trying to meet (e.g., have $1M)

Goal state

• Any state which meets the goal condition

 ex: Thursday, have $1M, live in NYC

Action

• Function that maps (transitions) from one state to another



Search Space Definitions

Problem formulation

• Describe a general problem as a search problem

Solution

• Sequence of actions that transitions the world from the initial state to a goal 

state

Solution cost (additive)

• Sum of the cost of operators

• Alternative:  sum of distances, number of steps, etc.

Search

• Process of looking for a solution

• Search algorithm takes problem as input and returns solution

• We are searching through a space of possible states

Execution

• Process of executing sequence of actions (solution)



- On vacation in Romania; currently in Arad.

- Flight leaves tomorrow from Bucharest.

Example:Romania

A search problem is defined by:

1. Initial state (e.g., Arad)

2. Operators (e.g., Arad -> 

Zerind, Arad -> Sibiu, etc.)

3. Goal test (e.g., at Bucharest)

4. Solution cost (e.g., path cost)



- On vacation in Romania; currently in Arad.

- Flight leaves tomorrow from Bucharest.

Initial state

o Arad

Actions

o Go from one city to another

Transition Model

o If you go from city A to

city B, you end up in city B

Goal State

o Bucharest

Path Cost

o Sum of edge costs (total distance traveled)

Example:Romania



StateSpace

The initial state, actions, and transition model define the state space of the problem;

• The set of all states reachable from initial state by any  sequence of actions.

• Can be represented as a directed graph where the  nodes are states and links 

between nodes are actions.

What is the state space for 

    the Romania problem?



Search problems and solutions

• A search problem can be defined as a set of possible states that the 

environment can be in. we call this state space. 

• The initial state that the agent starts in. For example: Arad.

• A set of one or more goal states. Sometimes there is one goal state 

(Bucharest), or a set of alternative goal states. 

• The actions available to the agent. Given a state S, action(s) returns a finite 

set of actions that can be executed in S. we say that each of these actions is 

applicable in S.

• Actions(Arad)= {To_Sibiu, To_Timisoara, To_Zerind}.



Search problems and solutions

• A transition model, which describes what each action does. Results (s, a) 

returns the state that results from doing action a in state s. For example, 

Results(Arad, To_Zerind) = Zerind.

• An action cost function, gives numeric cost of applying action a in the state S 

to reach 𝑠′.

• A sequence of actions forms a path, and a solution is a path from the initial 

state to a goal state. We assume that action costs are additive; that is, the total 

cost of a path is the sum of the individual action cost. 

• An optimal solution has the lowest path cost among all solutions.

• The state space can be represented as a graph in which the vertices are 

states and the directed edges between them are actions.



Search problems and solutions

State space:  cities

Successor function:  Roads: go 

to adjacent city with cost = 

distance 

Start state: Arad

Goal test: is state == Bucharest?

Solution?



• A model is the formulation of the problem. 

• State space graph: a mathematical representation of the search problem. 

Nodes are world configurations. Arcs represent successors (action results). 

The goal test is a set of goal nodes (maybe only ones).

• Each state occurs only once.

State Space



State Space

An AI problem can be represented as a state space graph.

A graph is a set of nodes and links that connect them.  

Graph theory:

o Labeled graph.

o Directed graph.

o Path.

o Rooted graph.

o Tree.

○ Parent.

○ Child.

○ Sibling.

○ Ancestor.

○ Descendant.



Data structure for Search tree 

(Node)

we will assume a node is a data structure with five components:

• the state in the state space to which the node corresponds;

• the node in the search tree that generated this node (this is called the parent 

node);

• the operator that was applied to generate the node;

• the number of nodes on the path from the root to this node (the depth of the 

node);

• the path cost of the path from the initial state to the node.

The node data type is thus:

datatype node

components: STATE, PARENT-NODE, OPERATOR, DEPTH, PATH-COST



o States:

o Agent location and dirt location

o How many possible states?

o What if there are n possible locations?
o The size of the state space growsexponentially with the 

“size” of the world!

o Actions:

o Left, right, suck.

o Transition Model .. ?

Example:VacuumWorld



Example:VacuumWorld

   StateSpaceGraph

o Transition Model:



Example:the  8-Puzzle

o States

o Locations of tiles

o 8-puzzle: 181,440 states (9!/2)

o 15-puzzle: ~10 trillion states

o 24-puzzle: ~1025 states

o Actions

o Move blank left, right, up, down

o Path Cost

o 1 per move



Example:RobotMotionPlanning

o States
o Real-valued joint parameters (angles, displacements).

o Actions
o Continuous motions of robot joints.

o Goal State
o Configuration in which object is grasped.

o Path Cost
o Time to execute, etc.



 Example: Rubik’s Cube

States: list of colors for each cell on 

each face

Initial state: one specific cube 

configuration

Action: rotate row x or column y on 

face z direction a

Goal:  configuration has only one 

color on each face

Path cost:  1 per move



Example: Eight Queens

States: locations of 8 queens on 

chess board

Initial state: one specific queen’s 

configuration

Actions: move queen x to row y 

and column z

Goal:  no queen can attack another 

(cannot be in same row, column, or 

diagonal)



Example:Tic-Tac-Toe

• Nodes(N): all the different configuration of Xs and Os that  

the game can have.

• Arcs (A): generated by legal moves by placing  X or O  in 

unused location.

• Start state (S): an empty board.

• Goal states (GD): a board with three Xs in a row,  column, 

or diagonal.

• The arcs are directed, then no cycles in the state space,

directed acyclic graph (DAG).

• Complexity: 9! Different paths can be generated.



Example:TravelingSalesperson

A salesperson has five cites to visit and ten must return home.

•Nodes(N): represent 5 cites.

•Arcs(A): labeled with weight indicating the cost of traveling  

between connected cites.

•Start state(S): a home city.

•Goal states(GD): an entire path contains a complete circuit

with minimum cost.

•Complexity: (n-1)! Different cost-weighted paths can 

be  generated.



Performance Evaluation of Search Strategies

● It is criteria used to choose search algorithms

● Evaluating the algorithms performance considering four factors:

○ COMPLETENESS

■ Is the algorithm guaranteed to find a solution when there is one, and to

correctly report failure when there is not?

○ COST OPTIMALITY

■ Does the algorithm find a solution to the problem with the lowest

path cost of all solutions?

○ TIME COMPLEXITY

■ How long does it take to find the solution? This can be measured in

seconds or more abstractly by the number of states and actions

considered?

○ SPACE COMPLEXITY

■ How much memory is needed to perform the search?



Searching with a general search tree

Search:

• Expand out potential plans (tree nodes)

• Maintain a fringe of partial plans under consideration 

• Try to expand as few tree nodes as possible.

Important ideas: fringe, expansion, exploration strategy



Search..?

Given:

✓ Initial state

✓ Actions

✓ Transition model

✓ Goal state

✓ Path cost

How do we find the optimal solution?



Search:Basic_idea

o Let’s begin at the start state and expand it by making a

list of all possible successor states.

o Maintain a frontier or a list of unexpanded states.

o At each step, pick a state from the frontier to expand.

o Keep going until you reach a goal state.

o Try to expand as few states as possible.



Search:Basic_idea

Start



Search:Basic_idea
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 Search:Basic_idea



“What if” tree of sequences of actions and

outcomes;

▪ I.e., When we are searching, we are not acting  in 

the world, merely “thinking” about the  possibilities.

▪ The root node corresponds to the starting state.

▪ The children of a node correspond to the

successor states of that node’s state.

▪ A path through the tree corresponds to a

sequence of actions.

▪ A solution is a path ending in the goal state

…

Starting  
State

Successor  
State

Action

Goal  
State

Frontier

Nodes vs. States? A state represents the world, while a node is a data 

structure that is part of the search tree. A node must keep a pointer to its 

parent, path cost, and possibly other information.

SearchTree  (the What-if tree)



TreeSearch Algorithm Outline

Initialize the frontier using the starting state.

While the frontier is not empty:

• Choose a frontier node according to search strategy

and take it off the frontier.

• If the node contains the goal state, return solution.

• Else expand the node and add its children to the  

frontier.



TreeSearchExample

Start: Arad
Goal: Bucharest



TreeSearchExample

Start: Arad
Goal: Bucharest



TreeSearchExample

Start: Arad
Goal: Bucharest



HandlingRepeated States

To handle repeated states:

• Every time you expand a node, add that state to the 

explored set; do not put explored states on the frontier 

again.

• Every time you add a node to the frontier, check whether it

already exists with a higher path cost, and if yes, replace that

node with the new one.



General search algorithm 

Open = initial state  // open list is all generated states

   // that have not been “expanded”

While open not empty  // one iteration of search algorithm

   state = First(open)  // current state is first state in open

   Pop(open)   // remove new current state from open

   if Goal(state)   // test current state for goal condition

      return “succeed”  // search is complete

    // else expand the current state by

    // generating children and

    // reorder open list per search strategy

   else open = QueueFunction(open, Expand(state))

Return “fail”

Note: Search strategies differ only in QueuingFunction



General search algorithm 

The frontier is the set of nodes (and corresponding states) that have been 

reached but not yet expanded; the interior is the set of nodes (and 

corresponding states) that have been expanded.

Note that the frontier separates two regions of the state-space graph: an 

interior region where every state has been expanded and an exterior region 

of states that still need to be reached.

To understand completeness, consider a search problem with a single goal. 

That goal could be anywhere in the state space; therefore, a complete 

algorithm must be capable of systematically exploring every state that is 

reachable from the initial state.



What is search problem?

• An intelligent agent is trying to 

find a set or sequence of 

actions to achieve a goal

• This is a goal-based agent
Blind vs. Heuristic Strategies

Search



Today’s class

• Search 
• Uninformed (blind) search methods

• Depth first search

▪ Depth limited 

▪ Iterative deeping 

• Breadth first search

▪ Bidirectional  search

• Uniform cost search



❖ Blind (or Un-Informed / Exhaustive / Brute-Force)

informationstrategies do not exploit any of the  

contained in a state.

❖ Heuristic (or Informed) strategies exploits  

information to assess

such  

that one node is “more

promising” than another.

Blindvs.HeuristicStrategies



General search algorithm 

There are search strategies that come under the heading of uninformed search. 

The term means that they have no information about the number of steps or the path 

cost from the current state to the goal—all they can do is distinguish a goal state from 

a non goal state.

Uninformed search is also sometimes called blind search.

Strategies that use such considerations are called informed search strategies or 

heuristic search strategies.

An uninformed search is less effective than an informed search. An uninformed 

search is still important, however, because there are many problems for which there 

is no additional information to consider.



Depth-first search 



Depth-first search 

Depth-first search always expands one of the nodes at the deepest level of the tree. 

Only when the search hits a dead end (a non-goal node with no expansion) does the 

search go back and expand nodes at shallower levels.

GENERAL-SEARCH can implement this strategy with a queuing function that always 

puts the newly generated states at the front of the queue. Because the expanded node 

was the deepest, its successors will be even deeper and are now the deepest.

Depth-first search has very modest memory requirements. As the figure shows, it needs 

to store only a single path from the root to a leaf node, along with the remaining 

unexpanded sibling nodes for each node on the path.

depth-first search has much smaller needs for memory.



Depth First Search

● DFS is recursive a recursive algo for tree 

traversing

● It starts from the root node and follows each 

path to its greatest depth node before moving 

to the next path.

● DFS uses stack for its implementation.



Diagram



Depth-first search 

The time complexity for a depth-first search for problems with many solutions 

may actually be faster than breadth-first because it has a good chance of finding 

a solution after exploring only a small portion of the whole space (finite state).

The drawback of depth-first search is that it can get stuck if it goes down the 

wrong path. Many problems have very deep or even infinite search trees, so 

depth-first search will never be able to recover from an unlucky choice at one of 

the nodes near the top of the tree (incomplete).

Depth-first search is not cost-optimal; it returns the first solution it finds, even 

if it is not the cheapest. For finite state spaces, it is efficient and complete; in 

infinite state spaces, it is not systematic: it can get stuck going down an infinite 

path, even if there are no cycles. Thus, the depth-first search is incomplete.

In general depth-first search should be avoided for search trees with large or 

infinite maximum depths.



Depth-First Search

- QueueingFn adds the children to the front of the open list 

- BFS emulates FIFO queue

- DFS emulates LIFO stack

- Net effect

• Follow leftmost path to the bottom, then backtrack

• Expand deepest node first 



Backtracking Search

Start
Node

Dead Dead Dead Dead  
End End End End



DFS Examples



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5

FRINGE = (1)

Goal

6 7

12 13 14 1510 1198



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5

FRINGE = (2, 3)

6 7

12 13 14 1510 1198



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5

FRINGE = (4, 5, 3)

6 7

12 13 14 1510 1198



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (8, 9, 5, 3)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (9, 5, 3)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (5, 3)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (10, 11, 3)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

11 12 13 14 151098

FRINGE = (11, 3)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (3)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (6, 7)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (12, 13, 7)



Depth-FirstStrategy

New nodes are inserted at the front of the FRINGE.

1

2 3

4 5 6 7

12 13 14 1510 1198

FRINGE = (13, 7)



Analysis

Time complexity

➢In the worst case, search entire space

➢Goal may be at level d but tree may continue to level m, m>=d,  O(bm)

➢Particularly bad if tree is infinitely deep

Space complexity

➢Only need to save one set of children at each level

➢1 + b + b + … + b (m levels total) = O(bm)

➢For previous example, DFS requires 118kb instead of 10 petabytes for d=12 

(10 billion times less)

Optimal: it is nonoptimal as it may generate many steps or high costs to reach 

the goal state.

Completeness: Complete with in finite state space



Depth First Search.

Advantages:

● Requires very less memory as it only store a stack of nodes on the path from 

root node to the current node.

● Takes less time to reach to the goal node than BFS if it traverses in the right 

path

Disadvantages

● Possibility that many states keep reoccurring and there is no guarantee of 

finding the solution.

● DFS goes deep down searching and sometime it may go to the infinite loop



Depth Limited Search

● To overcome the problem of infinite depth in DFS, it

can be limited to predetermined depth.

● Node at the depth limit will treat as it has no successor

nodes further.

● It can be terminated with two conditions of failure:
○ Standard value Failure: the problem does not have a solution

○ Cutoff failure value: no solution for the problem within a given depth limit.



Depth-first search  DFS 

S

D

B

A

C

G4
2

4

5

3

1

2

5

Current Fringe 

- S

(0)

S

(0)

A  B  D 

1   1   1

D

1

A  B  G

1  1  2

G

2

Path: S -> D -> G

Fringe is a LIFO



Breadth-first search 



Breadth-first search 

In this strategy, the root node is expanded first, and then all the nodes generated by the 

root node are expanded next, including their successors, and so on. 

In general, all the nodes at depth d in the search tree are expanded before the nodes at 

depth d + 1

Breadth-first search can be implemented by calling the GENERAL-SEARCH algorithm

with a queuing function that puts the newly generated states at the end of the queue after 

all the previously generated states.

Breadth-first search is a very systematic strategy because it considers all the paths of 

length 1 first, then all those of length 2, and so on.

If there is a solution, breadth-first search is guaranteed to find it, and if there are several 

solutions, breadth-first search will always find the shallowest goal state first.



Breadth First Search (BFS)

● Searches breadthwise in tree or graph, so it is called 

BFS

● Starts searching from root node of the tree and expands 

all the successor node at the current level before moving

● to next nodes

● It is implemented using queue data structure.



Diagram



b = 2

BFS Examples



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4 5

FRINGE = (1)

Goal

6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4 5

FRINGE = (2, 3)

6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4 5

FRINGE = (3, 4, 5)

6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4 5

FRINGE = (4, 5, 6, 7)

6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4 5

FRINGE = (5, 6, 7, 8, 9)

6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4

FRINGE = (6, 7, 8, 9, 10, 11)

5 6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4

FRINGE = (7, 8, 9, 10, 11, 12, 13)

5 6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4

FRINGE = (8, 9, 10, 11, 12, 13, 14,
15)

5 6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4

FRINGE = (9, 10, 11, 12, 13, 14, 15)

5 6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4

FRINGE = (10, 11, 12, 13, 14, 15)
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Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.
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Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.
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FRINGE = (12, 13, 14, 15)

6 7

12 13 14 1510 1198



Breadth-FirstStrategy

New nodes are inserted at the end of the FRINGE.

1

2 3

4 5

FRINGE = (13, 14, 15)

6 7

12 13 14 1510 1198



Breadth-first search 

In terms of the four criteria

• breadth-first search is complete, and it is optimal

Drawbacks 

• the memory requirements are a bigger problem for breadth-first search

• time requirements are still a major factor.

In general,

exponential complexity search problems cannot be solved for any but the 

smallest instances.



Analysis

Assume goal node at level d with constant branching factor b

Time complexity (measured in #nodes generated)

➢1 (1st level ) + b (2nd level) + b2 (3rd level) + … + bd (goal level) + (bd+1 – b) = O(bd+1)

This assumes goal on far right of level

Space complexity

➢At most majority of nodes at level d + majority of nodes at level d+1 = O(bd+1)

➢Exponential time and space

Completeness: If the shallowest goal node is at some finite depth then BFS will find 

a solution.

Optimality: If the past cost is non-decreasing function of the depth of the node.



Analysis

See what happens with b=10

• expand 10,000 nodes/second

• 1,000 bytes/node

Depth Nodes Time Memory

2 103 .11 seconds 1 megabyte

4 105 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

15 1016 3,523 years 1 exabyte



Breadth-first search BFS 

S

D

B

A

C

G4
2

4

5

3

1

2

5

Current Fringe 

- S

(0)

S

(0)

SA   SB   SD

(1)  (1)  (1)

SA

(1)

SB   SD  SAC

(1)  (1)  (2)

SB

(1)

SD   SAC  SBD

(1)      (2)  (2)

SD

(1)

SAC  SBD SDG

(2)  (2)  (2)  

SAC

(2)

SBD  SDG  SACD SACG

   (2)      (2)    (3)       (3)

SDG

(2)

Path: S -> D -> G

Fringe is a FIFO



Comparison of Search Techniques

DFS BFS

Complete N Y

Optimal N N

Heuristic N N

Time bm bd+1

Space bm bd+1



Depth-LimitedStrategy

Depth-first with depth cutoff k (maximal depth  below which nodes are not

expanded)

Three possible outcomes:

• Solution.

• Failure (no solution).

• Cutoff (no solution within cutoff).

Iterative- DeepeningStrategy

Repeat for k = 0, 1, 2, .. :

- Perform depth-first with depth cutoff k



Depth-LimitedStrategy

E.g., depth cutoff k = 1

Iterative-Deepening  Strategy

E.g., Repeat for k = 0 to 4

- Perform depth-first with depth cutoff k



Iterative Deepening Search

❑ DFS with depth bound

❑ QueuingFn is enqueue at front as with DFS

• Expand(state) only returns children such that depth(child) <= 

threshold

• This prevents search from going down infinite path

❑ First threshold is 1

• If do not find solution, increment threshold and repeat



Examples



Analysis

What about the repeated work?

Time complexity (number of generated nodes)

➢[b] + [b + b2] + .. + [b + b2 + .. + bd]

➢(d)b + (d-1) b2 + … + (1) bd

➢O(bd)



ComparingDepth,Breadth,&Iterative  Deepening  Search

Algorithms

o Breadth-first and iterative deepening guarantee

shortest solution.

o Breadth-first: high space complexity.

o Depth-first: low space complexity.

o Iterative deepening: best performance in terms of

orders of complexity.



BidirectionalSearch

Bidirectional search is a graph search algorithm that finds the shortest

path from an initial start state to a goal state in a directed graph.

It runs two simultaneous searches: one forward from the initial state

and one backward from the goal, stopping when they meet.

The reason for this approach is that in many cases, it is faster: for

instance, in a simplified model of search problem complexity in which

both searches expand a tree with branching factor b, and the distance

from start to goal is d, each of the two searches has complexity O(bd/2)

(in Big O notation), and the sum of these two search times is much less

than the O(bd) complexity that would result from a single search from the

beginning to the goal. 



Bidirectional Search

● Runs two simultaneous searches, one from initial state called as

forward search and other from the goal state called as backward

search.

● Replaces one simple search graph with two small subgraph.

● The search stops when these two graphs intersect each other.

● It can use search techniques such as BFS, DFS, DLS etc.



Diagram



Bidirectional Search.

Advantages:

● It is fast

● Requires less memory

Disadvantages:

● DIfficult to implement

● Should know the goal state in advance



Analysis

● Time Complexity: bidirectional using BFS is O(𝒃𝒅/𝟐)

● Space Complexity: O(𝒃𝒅/𝟐)

● Optimal: It is optimal

● Completeness: complete if we use BFS in both searches



BidirectionalSearch

Complexity of Bidirectional Search

Consider the following case:
- forward and backward branching both b, uniform ..

d

d/2 d/2

Time ~ bd/2+ bd/2 < bd



Uniform cost search 



Uniform Cost Search

● Search algorithm used for traversing a weighted tree or

graph

● Goal: to find path which has lowest cumulative cost to

reach the goal

● Expands node according to their path cost from the root

node.

● Priority queue is used to implement UCS

● It gives maximum priority to lowest cumulative cost.

● SImilar to BFS if path cost of all edge is same.



Diagram



uniform-cost search 

Uniform cost search modifies the breadth-first strategy by always expanding 

the lowest-cost node on the fringe (as measured by the path cost g(n)), rather 

than the lowest-depth node.

When certain conditions are met, the first solution that is found is guaranteed 

to be the cheapest solution because if there were a cheaper path that was a 

solution, it would have been expanded earlier and thus would have been 

found first.



Uniform Cost Search (Branch&Bound)

QueueingFn is SortByCostSoFar

Cost from root to current node n is g(n)

• Add operator costs along path

First goal found is least-cost solution

Space & time can be exponential because large subtrees with 

inexpensive steps may be explored before useful paths with costly steps

If costs are equal, time and space are O(bd)

• Otherwise, complexity related to cost of optimal solution



Advantages:

● Optimal because at every state path with the least cost is chosen

Disadvantages:

● Does not cares about the number of steps involved in

searching and only concerned about path cost. Due to

which this algorithm may be stuck in an infinite loop.

Uniform Cost Search



uniform-cost search 

•Each step has some cost   > 0.

•The cost of the path to each fringe node N is

g(N) =  costs of all steps.

•The goal is to generate a solution path of minimal cost.

•The queue FRINGE is sorted in increasing cost.



Nodes List = (S0)
Nodes List = (A1, B5, C15) 
Nodes List = (B5, G11, C15) 
Nodes List = (G10, G11, C15)

Uniform Cost Search



Frontier list:  C

Example 



Frontier list:  B(2) T(1) O(3) E(2) P(5)

Example 



Frontier list:  T(1) B(2) E(2) O(3) P(5)

Example 



Frontier list:  B(2) E(2) O(3) P(5)

Example 



Frontier list:  E(2) O(3) P(5)

Example 



Frontier list:  E(2) A(3) O(3) P(5) S(5) R(6)

Example 



Frontier list:  A(3) O(3) P(5) S(5) R(6)

Example 



Frontier list:  A(3) O(3) P(5) S(5) R(6) G(7)

Example 



Frontier list:  O(3) P(5) S(5) R(6) G(7)

Example 



Frontier list:  I(4) N(5) P(5) S(5) R(6) G(7)

Example 



Frontier list: N(5) P(5) S(5) R(6) G(7) Z(6)

Example 



Frontier list: N(5) P(5) S(5) R(6) Z(6) G(7)

Example 



Frontier list: P(5) S(5) R(6) Z(6) G(7)

Example 



Frontier list:  S(5) F(6) R(6) Z(6) G(7) D(8) L(10)

Example 



Frontier list:  F(6) R(6) Z(6) G(7) D(8) L(10)

Example 



Frontier list:  R(6) Z(6) G(7) D(8) L(10)

Example 



Frontier list:  Z(6) G(7) D(8) L(10)

Example 



Frontier list:  Z(6) G(7) D(8) L(10)

Example 



Example 

Path: C, O, I, Z



Uniform cost search  “path cost” 

 

S

D

B

A

C

G4
2

4

5

3

1

2

5

Current Fringe 

- S

(0)

S

(0)

A   B   D

(2)  (3)  (5)

A

(2)

B    D    C

(3)   (5)   (6)

B

(3)

D   C    D

(5)  (6)   (7)

D

(5)

C    D   G 

   (6)  (7)  (10)  

C

(6)

D      D    G    G

  (7)  (7)  (8)  (10)

G

(8)

Path: S -> A -> C -> G

Cost = 2+4+2= 8



Analysis

● Time Complexity: Let C* be the cost of the optimal solution, and

ɛ be the each step to get closer to the goal node. Then the

number of steps is C*/ɛ+1. Here +1 is taken as we start

from state 0 and end to C*/ɛ. Hence O(b^(1+[C*/ɛ]))

● Space complexity: The same logic is for space complexity. So

the worst case space complexity is O(b^(1+[C*/ɛ]))

● Optimal: optimal as it selects the path with lowest path cost

● Completeness: it is complete, if there is solution, it will find it.



Comparison of Search Techniques



Sara Sweidan
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Faculty of Computers & AI

Benha University, Egypt

Sweidan_ds@fci.bu.edu.eg

Thank you 


	Welcome
	Slide 1: Artificial Intelligence
	Slide 2: Supplementary Textbook

	Design, Morph, Annotate, Work Together, Tell Me
	Slide 3: Problem Solving as Search  & State Space Search
	Slide 4: Why this chapter??
	Slide 5: Solving    Problems            by          SEARCHING
	Slide 6: Types ofAgents
	Slide 7: Problem Solving - Definition
	Slide 8: Problem Solving
	Slide 9: Problem Solving
	Slide 10: State Space
	Slide 11: Problem-solving Agent
	Slide 12: Problem Formulation: Using Cleaning Robot
	Slide 13: Formulation
	Slide 14: Example:Tic-Tac-Toe Game
	Slide 15: Example:Mechanical Fault Diagnosing
	Slide 16: State Space Search Strategies
	Slide 17: State Space Search Strategies.. Selecting Search Strategy
	Slide 18: How Human Beings Think ..?
	Slide 19: Heuristic Search
	Slide 20: Search
	Slide 21: Search
	Slide 22: Search Problem Components
	Slide 23: Search Space Definitions
	Slide 24: Search Space Definitions
	Slide 25: Example:Romania
	Slide 26: Example:Romania
	Slide 27: State Space
	Slide 28: Search problems and solutions
	Slide 29: Search problems and solutions
	Slide 30: Search problems and solutions
	Slide 31: State    Space
	Slide 32: State    Space
	Slide 33: Data structure for Search tree (Node)
	Slide 34: Example: Vacuum World
	Slide 35: Example:Vacuum World     State Space Graph
	Slide 36: Example: the  8-Puzzle
	Slide 37: Example: Robot Motion Planning
	Slide 38:   Example:  Rubik’s Cube
	Slide 39:  Example: Eight Queens
	Slide 40: Example: Tic-Tac-Toe
	Slide 41: Example: Traveling Salesperson
	Slide 42: Performance Evaluation of Search Strategies
	Slide 43: Searching with a general search tree
	Slide 44: Search ..?
	Slide 45: Search: Basic _idea
	Slide 46
	Slide 47
	Slide 48:   Search: Basic _idea
	Slide 49:   Search: Basic _idea
	Slide 50:   Search: Basic _idea
	Slide 51:   Search: Basic _idea
	Slide 52:   Search: Basic _idea
	Slide 53:   Search: Basic _idea
	Slide 54:   Search: Basic _idea
	Slide 55:   Search: Basic _idea
	Slide 56:   Search: Basic _idea
	Slide 57:   Search: Basic _idea
	Slide 58: Search Tree   (the What-if  tree)
	Slide 59: Tree  Search     Algorithm     Outline
	Slide 60: Tree Search Example
	Slide 61: Tree Search Example
	Slide 62: Tree Search Example
	Slide 63: Handling Repeated   States
	Slide 64: General search algorithm 
	Slide 65: General search algorithm 
	Slide 66
	Slide 67: Today’s class
	Slide 68: Blind vs. Heuristic Strategies
	Slide 69: General search algorithm 
	Slide 70: Depth-first search 
	Slide 71: Depth-first search 
	Slide 72: Depth First Search
	Slide 73: Diagram
	Slide 74: Depth-first search 
	Slide 75: Depth-First Search
	Slide 76: Backtracking     Search
	Slide 77: DFS Examples
	Slide 78: Depth-First Strategy
	Slide 79: Depth-First Strategy
	Slide 80: Depth-First Strategy
	Slide 81: Depth-First Strategy
	Slide 82: Depth-First Strategy
	Slide 83: Depth-First Strategy
	Slide 84: Depth-First Strategy
	Slide 85: Depth-First Strategy
	Slide 86: Depth-First Strategy
	Slide 87: Depth-First Strategy
	Slide 88: Depth-First Strategy
	Slide 89: Depth-First Strategy
	Slide 90: Analysis
	Slide 91: Depth First Search.
	Slide 92: Depth Limited Search
	Slide 93: Depth-first search  DFS 
	Slide 94: Breadth-first search 
	Slide 95: Breadth-first search 
	Slide 96: Breadth First Search (BFS)
	Slide 97: Diagram
	Slide 98: BFS Examples
	Slide 99: Breadth-First Strategy
	Slide 100: Breadth-First Strategy
	Slide 101: Breadth-First Strategy
	Slide 102: Breadth-First Strategy
	Slide 103: Breadth-First Strategy
	Slide 104: Breadth-First Strategy
	Slide 105: Breadth-First Strategy
	Slide 106: Breadth-First Strategy
	Slide 107: Breadth-First Strategy
	Slide 108: Breadth-First Strategy
	Slide 109: Breadth-First Strategy
	Slide 110: Breadth-First Strategy
	Slide 111: Breadth-First Strategy
	Slide 112: Breadth-first search 
	Slide 113: Analysis
	Slide 114: Analysis
	Slide 115: Breadth-first search BFS 
	Slide 116: Comparison of Search Techniques
	Slide 117: Depth-Limited Strategy
	Slide 118: Depth-Limited Strategy E.g., depth cutoff k = 1
	Slide 119: Iterative Deepening Search
	Slide 120: Examples
	Slide 121: Analysis
	Slide 122: Comparing   Depth, Breadth, & Iterative   Deepening  Search Algorithms
	Slide 123: Bidirectional   Search
	Slide 124: Bidirectional Search
	Slide 125: Diagram
	Slide 126: Bidirectional Search.
	Slide 127: Analysis 
	Slide 128: Bidirectional   Search Complexity    of    Bidirectional    Search
	Slide 129: Uniform cost search 
	Slide 130: Uniform Cost Search
	Slide 131: Diagram
	Slide 132: uniform-cost search 
	Slide 133: Uniform Cost Search (Branch&Bound)
	Slide 134: Uniform Cost Search
	Slide 136: uniform-cost search 
	Slide 137
	Slide 138: Example 
	Slide 139: Example 
	Slide 140: Example 
	Slide 141: Example 
	Slide 142: Example 
	Slide 143: Example 
	Slide 144: Example 
	Slide 145: Example 
	Slide 146: Example 
	Slide 147: Example 
	Slide 148: Example 
	Slide 149: Example 
	Slide 150: Example 
	Slide 151: Example 
	Slide 152: Example 
	Slide 153: Example 
	Slide 154: Example 
	Slide 155: Example 
	Slide 156: Example 
	Slide 157: Uniform cost search  “path cost” 
	Slide 158: Analysis
	Slide 159: Comparison of Search Techniques
	Slide 160


